
Гидротермальный рудогенез на дне океана. Глубоководные полиметаллические сульфиды

1/ КОЛЛЕКЦИЯ размещена в зале 5 «Геотектоника» в стеклянных кубах около стенда С-801. Количество: 5 образцов.

2/ Коллекция «Гидротермальный рудогенез на дне океана. Глубоководные полиметаллические сульфиды» включает «образцы, отобранные в рейсах НИС «Академик Мстислав Келдыш» (1988 г.), НИС «Профессор Логачёв» (2005 г.) переданные Музею землеведения в дар от Института океанологии им П.П. Ширшова (Москва) и Полярной морской ГРЭ ВНИИ Океанология, (Санкт-Петербург).

Текст в витрине

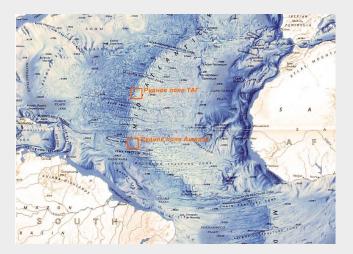
ИСТОРИЯ ИЗУЧЕНИЯ ГИДРОТЕРМАЛЬНОГО РУДООБРАЗОВАНИЯ В ЦЕНТРАЛЬНОЙ ЧАСТИ СРЕДИННО-АТЛАНТИЧЕСКОГО ХРЕБТА

Первые данные о наличии гидротермальной активности в рифтовой долине САХ были получены в конце 1970-х годов исследователями США и Франции. В 1984-86 гг. ими проводились детальные геолого-геофизические исследования с применением глубоководных автономных обитаемых аппаратов, буксируемых теле- и фотоустановок, сонаров бокового обзора и высокоточных эхолотов, буксируемых у дна с НИС «Рисёчер» (США), «Жан-Шарко» (Франция), а также глубоководное бурение с борта НИС «Джойдес Резолюшн» (США). В результате были открыты крупные гидротермальные поля – ТАГ (26°08′ с.ш., 44°49′ з.д.) и МАРК, или Снейк Пит (23°22′ с.ш., 44°57′ з.д.) и начаты их исследования.

После открытия в 1985-86 г.г. этих двух, первых в Атлантике групп высокотемпературных гидротермальных источников и связанных с ними поверхностных залежей глубоководных полиметаллических сульфидных руд, Полярная морская ГРЭ приступила к проведению систематических геолого-геофизических исследований в рифтовой долине САХ с целью оценки перспектив гидротермальной рудоносности. Проведенные работы позволили получить богатейшие материалы по геологическому строению осевой зоны САХ и крупнейших гидротермальных рудных полей. В ходе работ 1987-88 гг. были открыты рудопроявления на 24°30′ с.ш., а в 1994 г. – рудный узел «Логачёв» (14°45′ с.ш., 44°58′ з.д.), имеющие Российский приоритет.

В 2002-2005 гг. Полярной морской геологической экспедицией совместно с ВНИИОкеанология на НИС «Профессор Логачёв» были выполнены региональные и поисковые работы на отрезке рифтовой долины Срединно-Атлантического хребта от 13° до 17°с.ш. В результате этих исследований были открыты три новых гидротермальных рудных поля и одно рудопроявление. Одно поле, выявленное в 2004 г., расположено в районе 16°38′ с.ш., два других поля и одно рудопроявление локализованы в районе 13°с.ш. Они были объединены в рудный узел «Ашадзе».

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ГИДРОТЕРМАЛЬНЫХ РУДОПРОЯВЛЕНИЙ, ПРИУРОЧЕННЫХ К ВЫХОДАМ СЕРПЕНТИНИТОВ И СЕРПЕНТИНИЗИРОВАННЫХ УЛЬТРАОСНОВНЫХ ПОРОД


До недавнего времени у геологов, изучающих океан, существовало единое мнение, что все гидротермальные сульфидные руды на океанском дне пространственно и генетически связаны с молодыми вулканитами базальтового состава. Однако в последние годы на Срединно-Атлантическом хребте, помимо полей, связанных с вулканитами, были обнаружены сульфидные постройки, приуроченные к выходам серпентинитов и серпентинизированных ультраосновных пород. Это гидротермальные поля рудного узла Логачёв, открытые в 1994 г., поле Рейнбоу – в 1997 г., аномальное низкотемпературное гидротермальное поле Лост Сити, – в 2000 г., и, наконец, обнаруженные в 2003 и 2005 гг. гидротермальные поля рудного узла Ашадзе на 13° с.ш.

Главные сульфидные минералы гидротермальных образований, как пространственно связанных с базальтами, так и приуроченных к выходам серпентинизированных ультраосновных пород, одинаковы. Ими являются пирит, халькопирит, сфалерит, изокубанит, борнит. Реже встречаются пирротин, марказит, халькозин, ковеллин и дигенит. Однако состав микроэлементов существенно отличается. По сравнению с другими гидротермальными полями Мировой рифтовой системы, сульфидные руды гидротермальных полей, приуроченных к выходам серпентинизированных ультраосновных пород, в том числе и сульфидные руды рудного узла Ашадзе, оказались богаче Ni, Co, Au и элементами платиновой группы – т.е. элементами, характерными для ультрабазитов. Содержание Pt в рудах гидротермальных полей Рейнбоу и Логачёв-1 на порядок выше, чем в рудах из активной постройки ТАГ, связанной с выходами молодых вулканитов. В рудах этих гидротермальных полей установлены даже самостоятельные минералы никеля и кобальта — Со-содержащий пентландит (Fe,Ni,Co)₉S₈ и миллерит Ni₉S₉, при этом содержание кобальта в пентландите достигает 22,4 масс. %, а в миллерите — 7,1 масс. % [Ю.А. Богданов и др., 2004].

Высокотемпературные гидротермальные поля с сульфидными рудами

Гидротермальное поле	Координаты	Глубина, м
Менез Гвен	37°50′ с.ш., 30°02′ з.д.	840-870
Лаки Страйк	37°18′ с.ш., 32°16′ з.д.	1635-1710
Рейнбоу	36°14′ с.ш., 33°54′ з.д.	2250-2320
Брокен Спур	29°10′ с.ш., 43°10′ з.д.	3080-3110
ТАГ (Транс-Атлантический геотраверс)	26°08′ с.ш., 44°49′ з.д.	3625-3670
Снейк Пит (MARK)	23°22′ с.ш., 44°57′ з.д.	3420-3480
Логачёв	14°45′ с.ш., 44°58′ з.д.	2900-3050
Ашадзе-1	12°58,5′ с.ш., 46°28,5′ з.д.	4170-4220
Ашадзе-2	12°59,5′ с.ш., 44°54,4′ з.д.	3200-3300

ЗОНА ЗАДУГОВОГО СПРЕДИНГА БАССЕЙНА МАНУС развивается на коре океанического типа в северной части Ново-Гвинейского моря и отличается высокой скоростью раздвижения (10-12 см/год). Её магматизм характеризуется излиянием толеитовых базальтов близких к базальтам рифтовых зон СОХ.

Гидротермальные поля бассейна Манус были исследованы с помощью ГОА «Мир» в 1990 г. Многочисленные активные гидротермальные трубы, высотой 1–4 м расположены на сульфидном цоколе шириной 30-50 м, длиной 100 м и высотой ~ 20 м. Наиболее крупная гидротермальная постройка имеет высоту 14 м и ширину основания 10 м. Постройки сложены в основном сульфидами цинка — сфалеритом и вюртцитом, в меньших количествах — пиритом, марказитом, аморфным кремнезёмом (опалом), халькопиритом, баритом, ковеллином. Реже встречаются галенит и сульфосоли Ag и Sb.

Гидротермальный рудогенез на дне океана. Глубоководные полиметаллические сульфиды

Место отбора ΦΟΤΟ Название в коллекции/ Примечание Полевое название / номер образца Дар Института Срединно-**АНГИДРИТ** океанологии АН Атлантический СССР, лаборатория с тонкой вкрапленностью хребет, гидротермальном А.П. Лисицина, 1991 г. сульфидов поле ТАГ, глубина 3625-3670 м. Ангидрит с тонкой вкрапленностью сульфидов ВФ 12409 Отобран с помощью ГОА «Мир» в рейсе НИС «Академик Мстислав Келдыш». 1988 г. Срединно-Дар В.Е. Бельтенева. ОКИСЛЕННАЯ СУЛЬФИДНАЯ Атлантический Полярная морская ПОСТРОЙКА «ЧЕРНОГО хребет, рудное поле ГРЭ ВНИИ «Ашадзе-1», глубина КУРИЛЬЩИКА» Океанология, Санкт-4170-4220 м. Петербург, 2006г. в сульфидах Zn>Cu Драгирована в 26-м рейсе НИС «Черный курильщик», фрагмент постройки трубного комплекса, "труба" – двурогая «Профессор постройка ржаво-бурого, охристого и матово-Логачёв», 2005 г. черного цвета ВФ 14192 Срединно-Дар В.Е. Бельтенева. МАССИВНАЯ СУЛЬФИДНАЯ Атлантический Полярная морская РУДА хребет, рудное поле ГРЭ ВНИИ «Ашадзе-2», глубина с преобладающим Океанология, Санкт-3200-3300 м. халькопиритом (Cu>> Zn) из Петербург, 2006г. основания рудной постройки Драгирована в 26-м рейсе НИС «Профессор Сульфидная руда массивная неокисленная Логачёв», 2005 г. пирит-халькопиритовая с преобладающим халькопиритом бронзово-желтого цвета RΦ 14190 Срединно-Дар В.Е. Бельтенева. ОРУДЕНЕЛАЯ БРЕКЧИЯ Атлантический Полярная морская ПЕРИДОТИТА хребет, рудное поле ГРЭ ВНИИ с корками гидроокислов Fe и «Ашадзе-1», глубина Океанология, Санкт-Mn с периферии рудного 4170-4220 м. Петербург, 2006г. Драгирована в 26-м поля рейсе НИС Перидотит. Сульфидизированная брекчия «Профессор измененного перидотита гарцбургита светлозеленого с серыми и желтыми пятнами Логачёв», 2005 г. ЮЗ часть Тихого Дар Института ЦИНКОВАЯ КОЛЧЕДАННАЯ океана, Новоокеанологии им П.П. Гвинейское море, Ширшова АН СССР, РУДА задуговой бассейн лаборатория А.П. Лисицина, 1991 г. Манус, гидротермальное поле Red Star. Цинковая колчеданная руда ВФ 12419 глубина 1680-1730 м. Отобрана с помощью ГОА «Мир» в рейсе

НИС «Академик Мстислав Келдыш», 1988 г.